![]() |
International Society of Science and Applied Technologies |
Enhanced Underground Object Detection with Conditional Adversarial Networks | ||||
Author | Will Rice
|
|||
Co-Author(s) | Maxwell Omwenga; Dalei Wu; Yu Liang
|
|||
Abstract | To augment training data for machine learning models in Ground Penetrating Radar (GPR) data analysis, this paper focuses on the generation of realistic GPR data using Generative Adversarial Networks (GAN). An innovative GAN architecture is proposed for generating GPR B-scans, which is, to the author’s knowledge, the first successful application of GAN to GPR data. As one of the major contributions, a novel loss function is formulated by merging frequency domain features with time domain features. To test the efficacy of generated B- scans, a real-time object classifier is proposed to measure the performance gain derived from augmented B-Scan images. The numerical experiment illustrated that, based on the augmented training data, the proposed GAN architecture demonstrated a significant increase (from 82% to 98%) in the accuracy of the object classifier.
|
|||
Keywords | Ground Penetrating Radar, Generative Adversarial Networks, Underground Object Detection, Classification | |||
Article #: DSIS19-59 |
August 1-3, 2019 - Las Vegas, NV, U.S.A. |